Abstract
In this work, a TiO2-coated GaN nanowire-based back-gate field-effect transistor (FET) device was designed and implemented to address the well-known cross-sensitive nature of metal oxides. Even though a two-terminal TiO2/GaN chemiresistor is highly sensitive to NO2, it suffers from lack of selectivity toward NO2 and SO2. Here, a Si back gate with C-AlGaN as the gate dielectric was demonstrated as a tunable parameter, which enhances discrimination of these cross-sensitive gases at room temperature (20 °C). Compared to no bias, a back-gate bias resulted in a significant 60% increase in NO2 response, whereas the increase was an insignificant 10% in SO2 response. The differential change in gas response was explained with the help of a band diagram, derived from the energetics of molecular models based on density functional theory (DFT). The device geometries in this work are not optimized and are intended only for proving the concept.
Funder
National science foundation
Subject
Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry
Cited by
11 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献