Recent Progress in Green Conversion of Biomass Alcohol to Chemicals via Aerobic Oxidation

Author:

Zhang Yifei,Cao Changhai,Li GaoORCID

Abstract

The aerobic oxidation of biomass transformations into valuable chemical products via a green catalytic process is one of the most important protocols because of its low reaction temperature and high productivity rate. Recently, the introduction of small-sized Cu and Au nanoparticles (e.g., 1–3 nm) upon the surface of oxides can provide more catalytic active sites and then enhance the catalytic activity of aerobic oxidations significantly. The introduction of these metal nanoparticles is a kind of perfect catalyst for enhancing the efficiency of the activation of oxygen molecules and the separation of photo-generated holes and electrons during the photo-oxidation reactions. In this account, we summarize recent progress of the aerobic oxidation of biomass alcohol toward the production of highly valuable chemicals over supported catalysts of metal nanoparticles (NPs), including methanol conversion into methyl formate via photo-oxidation over CuOx/TiO2 nanocomposites, biomass ethanol transformation with biomass furfural to produce hydrocarbons biofuels over Au/NiO catalysts, and glucose oxidation to gluconic acid using Au/activated carbon (Au/AC) as catalysts. Furthermore, at the atomic level, to understand the structure-property correlations, insights into molecular activations of oxygen and biomass, and the investigation of active catalytic sites on photo/catalysts will be detailed and discussed. Finally, future studies are needed to achieve more exciting progress in the fundamental revealing of the catalytic reaction mechanisms and conversion pathway and the future perspective in industrial applications.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3