Continuous dimethyl carbonate synthesis from CO2 and methanol over BixCe1−xOδ monoliths: Effect of bismuth doping on population of oxygen vacancies, activity, and reaction pathway

Author:

Chen Yongdong,Li Yue,Chen Wei,Xu Wen Wu,Han Zhong-kang,Waheed Ammara,Ye Zhongbin,Li Gao,Baiker Alfons

Abstract

AbstractWe evaluated bismuth doped cerium oxide catalysts for the continuous synthesis of dimethyl carbonate (DMC) from methanol and carbon dioxide in the absence of a dehydrating agent. BixCe1−xOδ nanocomposites of various compositions (x = 0.06–0.24) were coated on a ceramic honeycomb and their structural and catalytic properties were examined. The incorporation of Bi species into the CeO2 lattice facilitated controlling of the surface population of oxygen vacancies, which is shown to play a crucial role in the mechanism of this reaction and is an important parameter for the design of ceria-based catalysts. The DMC production rate of the BixCe1−xOδ catalysts was found to be strongly enhanced with increasing Ov concentration. The concentration of oxygen vacancies exhibited a maximum for Bi0.12Ce0.88Oδ, which afforded the highest DMC production rate. Long-term tests showed stable activity and selectivity of this catalyst over 45 h on-stream at 140 °C and a gas-hourly space velocity of 2,880 mL·gcat−1·h−1. In-situ modulation excitation diffuse reflection Fourier transform infrared spectroscopy and first-principle calculations indicate that the DMC synthesis occurs through reaction of a bidentate carbonate intermediate with the activated methoxy (−OCH3) species. The activation of CO2 to form the bidentate carbonate intermediate on the oxygen vacancy sites is identified as highest energy barrier in the reaction pathway and thus is likely the rate-determining step.

Publisher

Springer Science and Business Media LLC

Subject

Electrical and Electronic Engineering,General Materials Science,Condensed Matter Physics,Atomic and Molecular Physics, and Optics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3