Author:
Chen Yongdong,Li Yue,Chen Wei,Xu Wen Wu,Han Zhong-kang,Waheed Ammara,Ye Zhongbin,Li Gao,Baiker Alfons
Abstract
AbstractWe evaluated bismuth doped cerium oxide catalysts for the continuous synthesis of dimethyl carbonate (DMC) from methanol and carbon dioxide in the absence of a dehydrating agent. BixCe1−xOδ nanocomposites of various compositions (x = 0.06–0.24) were coated on a ceramic honeycomb and their structural and catalytic properties were examined. The incorporation of Bi species into the CeO2 lattice facilitated controlling of the surface population of oxygen vacancies, which is shown to play a crucial role in the mechanism of this reaction and is an important parameter for the design of ceria-based catalysts. The DMC production rate of the BixCe1−xOδ catalysts was found to be strongly enhanced with increasing Ov concentration. The concentration of oxygen vacancies exhibited a maximum for Bi0.12Ce0.88Oδ, which afforded the highest DMC production rate. Long-term tests showed stable activity and selectivity of this catalyst over 45 h on-stream at 140 °C and a gas-hourly space velocity of 2,880 mL·gcat−1·h−1. In-situ modulation excitation diffuse reflection Fourier transform infrared spectroscopy and first-principle calculations indicate that the DMC synthesis occurs through reaction of a bidentate carbonate intermediate with the activated methoxy (−OCH3) species. The activation of CO2 to form the bidentate carbonate intermediate on the oxygen vacancy sites is identified as highest energy barrier in the reaction pathway and thus is likely the rate-determining step.
Publisher
Springer Science and Business Media LLC
Subject
Electrical and Electronic Engineering,General Materials Science,Condensed Matter Physics,Atomic and Molecular Physics, and Optics
Cited by
61 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献