Prediction of Severe Drought Area Based on Random Forest: Using Satellite Image and Topography Data

Author:

Park HaekyungORCID,Kim Kyungmin,Lee Dong kun

Abstract

The uncertainty of drought forecasting based on past meteorological data is increasing because of climate change. However, agricultural droughts, associated with food resources and determined by soil moisture, must be predicted several months ahead for timely resource allocation. Accordingly, we designed a severe drought area prediction (SDAP) model for short-term drought without meteorological data. The predictions of our proposed SDAP model indicate a forecast of serious drought areas assuming non-rainfall, not a probability prediction of drought occurrence. Furthermore, this prediction provides more practical information to help with rapid water allocation during a real drought. The model structure using remote sensing data consists of two parts. First, the drought function f(x) from the training area by random forest (RF) learned the changes in the pattern of soil moisture index (SMI) from the past drought and the training performance was found to be root mean square error (RMSE) = 0.052, mean absolute error (MAE) = 0.039, R2 = 0.91. Second, derived f(x) predicted the SMI of the study area, which is 20 times larger than the training area, of the same season of another year as RMSE = 0.382, MAE = 0.375, R2 = 0.58. We also obtained the variable importance stemming from RF and discussed its meaning along with the advantages and limitations of the model, training areas selection, and prediction coverage.

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3