Battery-Supercapacitor Energy Storage Systems for Electrical Vehicles: A Review

Author:

Lemian Diana,Bode FlorinORCID

Abstract

The current worldwide energy directives are oriented toward reducing energy consumption and lowering greenhouse gas emissions. The exponential increase in the production of electrified vehicles in the last decade are an important part of meeting global goals on the climate change. However, while no greenhouse gas emissions directly come from the operations of the electrical vehicles, the electrical vehicle production process results in much higher energy consumption and greenhouse gas emissions than in the case of a classical internal combustion vehicle; thus, to reduce the environment impact of electrified vehicles, they should be used for as long as possible. Using only batteries for electric vehicles can lead to a shorter battery life for certain applications, such as in the case of those with many stops and starts but not only in these cases. To increase the lifespan of the batteries, couplings between the batteries and the supercapacitors for the new electrical vehicles in the form of the hybrid energy storage systems seems to be the most appropriate way. For this, there are four different types of converters, including rectifiers, inverters, AC-AC converters, and DC-DC converters. For a hybrid energy storage system to operate consistently, effectively, and safely, an appropriate realistic controller technique must be used; at the moment, a few techniques are being used on the market.

Funder

Ministry of Research, Innovation and Digitization, CCCDI-UEFISCDI

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

Reference69 articles.

1. Grujic, I., Dorić, J., Stojanovic, N., Abdullah, O.I., Grujić, I., and Stojanović, N. (2022, June 15). Numerical Analysis of Hydrogen Fueled IC Engine. Available online: https://www.researchgate.net/publication/337898468.

2. Renewable energy resources: Current status, future prospects and their enabling technology;Ellabban;Renew. Sustain. Energy Rev.,2014

3. Renewable energy and climate change;Olabi;Renew. Sustain. Energy Rev.,2022

4. Cognitive Sustainability;Zoldy;Cogn. Sustain.,2022

5. Effects of fossil fuel and total anthropogenic emission removal on public health and climate;Lelieveld;Proc. Natl. Acad. Sci. USA,2019

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3