Techno-Economic Evaluation of a Hybrid Energy System for an Educational Institution: A Case Study

Author:

Gbadamosi Saheed Lekan,Ogunje Fejiro S.ORCID,Wara Samuel TitaORCID,Nwulu Nnamdi I.ORCID

Abstract

This study evaluates the technical, economic and environmental benefits of renewable energy resources (RER) for electricity supply to large size buildings in an educational institution. The cost of energy generation coupled with the epileptic power supply has led to the demand for an alternative source of energy supply to an education institution in Nigeria. The essence of renewable energy generation is becoming more glaring and a hybrid energy system (HES) is believed to deliver efficient and sustainable energy for the institutions; this paper aims to analyse the techno-economic assessment of a HES design setup at the College of Engineering, Afe Babalola University Ado-Ekiti for powering the university buildings; this grid connected system was assessed with various system configurations was simulated using hybrid optimization model for electric renewables (HOMER) software and the levelized cost of energy (LCOE) with the consideration of the HES benefits was developed. The results obtained from the simulation indicate that the grid and solar Photovoltaic (PV) system provide an optimal system that adequately meets the load demand with more renewable energy integration and this significantly reduces the cost of energy by 45% and also causes a 32.09% reduction in CO2 emissions; this configuration is environmentally sustainable and financially suitable for electrifying an educational institution.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

Reference28 articles.

1. Techno-economic design and evaluation of hybrid energy systems for residential communities: Case study of Jubail industrial city;Baseer;J. Clean. Prod.,2019

2. Understanding the energy consumption and occupancy of a multi-purpose academic building;Gul;Energy Build.,2015

3. A comparative analysis of generation and transmission expansion planning models for power loss minimization;Sustain. Energy Grids Netw.,2021

4. A multi-period composite generation and transmission expansion planning model incorporating renewable energy sources and demand response;Gbadamosi;Sustain. Energy Technol. Assess.,2020

5. Harmonics Constrained Approach to Composite Power System Expansion Planning with Large-Scale Renewable Energy Sources;Gbadamosi;Energies,2022

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3