Design and Techno-Economic Evaluation of a Hybrid Mini-grid System for an Academic Institution

Author:

Zarmai Jesse Tanko,Alabi Isaac Ibitoye,Ebisine Ebimene Ezekiel,Zarmai Musa Tanko,Irefu Ovis D.

Abstract

Inadequate electricity supply is a global challenge that needs solutions. This situation has compelled the purchasing of fossil fuel-generating units for use in residential, commercial, and industrial sectors to generate electricity. However, using fossil fuel generating units cause greenhouse gas emissions, bringing about environmental pollution and ultimately resulting in climate change. In particular, educational institutions require adequate and reliable power supply to ensure proper learning and teaching, which is lacking in developing countries like Nigeria. Fortunately, Nigeria has enormous renewable energy sources such as solar energy, which can be utilized through photovoltaic (PV) modules to generate clean energy fed into a mini-grid. This novel approach focused on an educational institution that will enable adequate electricity from the mini-grid for proper learning and teaching, reduced negative environmental impacts, and lower energy costs. Therefore, this research is focused on developing an effective hybrid utility grid-diesel generator-solar PV mini-grid system for the Faculty of Engineering and Technology of the Nigerian Defence Academy, Kaduna. Design analysis and techno-economic evaluation of the mini-grid were carried out using the HOMER Pro software tool, which was also used to simulate and optimize the mini-grid. The results revealed that the hybrid system comprising the grid, diesel generator, PV, and converter was technically and economically viable. The net present cost (NPC) of $182,065.20, producing a total energy of 836,430 kWh/year, was obtained and gave 0.00198 $/kWh as a levelized cost of energy (LCOE). Correspondingly, a renewable fraction (RF) of 98.3% was attained, thus meeting the Faculty's daily load demand of 575.64 kWh/day, thereby providing a reliable and improved energy supply at the best cost. Therefore, a hybrid system such as this one is proposed for tertiary institutions to ensure greater electric power supply availability.

Publisher

LIDSEN Publishing Inc

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3