Li-Ion Battery Anode State of Charge Estimation and Degradation Monitoring Using Battery Casing via Unknown Input Observer

Author:

Rahman Ashikur,Lin XiankeORCID,Wang Chongming

Abstract

The anode state of charge (SOC) and degradation information pertaining to lithium-ion batteries (LIBs) is crucial for understanding battery degradation over time. This information about each cell in a battery pack can help prolong the battery pack’s life cycle. Because of the limited observability, estimating the anode state and capacity fade is difficult. This task is even more challenging for the cells in a battery pack, as the current through the individual cell is not constant when cells are connected in parallel. Considering these challenges, this paper presents a novel method to set up three-electrode cells by using the battery’s casing as a reference electrode for building a three-electrode battery pack. This work is a continuation of the authors’ previous research. An unknown input observer (UIO) is employed to estimate the anode SOC of an individual battery in the battery pack. To ensure the stability of a defined Lyapunov function, the UIO parameter matrices are expressed as a linear matrix inequality (LMI). The anode SOC of a lithium nickel manganese cobalt oxide (NMC) battery is estimated by using the standard graphite potential (SGP) and state of lithiation (SOL) characteristic curve. The anode capacity is then calculated by using the total charge transferred in a charging cycle and the estimated SOC of the anode. The degradation of the battery is then evaluated by comparing the capacity fading of the anode to the total charge carried to the cell. The proposed method can estimate the anode SOC and capacity fade of an individual battery in a battery pack, which can monitor the degradation of the individual batteries and the battery pack in real time. By using the proposed method, we can identify the over-degraded batteries in the pack for remaining useful life analysis on the battery.

Funder

Natural Sciences and Engineering Research Council

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3