Abstract
Renewable energy communities are catalysts of social innovation, the citizens’ engagement in energy actions, and the exploitation of local resources. Thus, this paper defines a model for analyzing and optimally sizing energy systems serving renewable energy communities. Then, the proposed and replicable model was tailored to the economic feasibility analysis of a renewable energy community in the municipality of Tirano (Northern Italy). An energy audit was carried out to identify the electricity production and consumption within the perimeter of the primary substation and the thermal energy demand of the existing district heating network. The technical features of the energy conversion systems serving the renewable energy community were determined: an organic Rankine cycle biomass-based cogeneration plant, a mini-hydro plant, and a distributed photovoltaic system. Moreover, several different scenarios have been identified, in terms of cogeneration operating mode, photovoltaic penetration, and thermal energy economic value. The results show that, moving from 4.22 MW to 5.22 MW of photovoltaic peak power, the annual renewable electricity production increases by 10.1%. In particular, the simple pay back ranges between 4.90 and 4.98 years and the net present value between EUR 12.4 and 13.3 M for CHP operating at full power mode, considering that thermal energy available from the cogeneration unit is sold at EUR 49.2/MWh. These outcomes demonstrate the economic feasibility of wood-biomass-based renewable energy communities, which may help to enlarge the contribution of renewable technologies other than photovoltaic.
Subject
Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction
Reference41 articles.
1. Directive (EU) 2018/2001 of the European Parliament and of the Council of 11 December 2018 on the Promotion of the Use of Energy from Renewable Sources,2018
2. Directive (EU) 2019/944 of the European Parliament and of the Council of 5 June 2019 on Common Rules for the Internal Market for Electricity and Amending Directive 2012/27/EU,2019
3. Optimal Design of Energy Communities in the Italian Regulatory Framework
4. Piano Energia e Clima (PNIEC),2020
5. Smart energy and smart energy systems
Cited by
15 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献