A Dynamic Analysis of Biomethane Reforming for a Solid Oxide Fuel Cell Operating in a Power-to-Heat System Integrated into a Renewable Energy Community

Author:

Calise Francesco1ORCID,Cappiello Francesco Liberato1ORCID,Cimmino Luca1ORCID,Vicidomini Maria1ORCID

Affiliation:

1. Department of Industrial Engineering, University of Naples Federico II, 80125 Naples, Italy

Abstract

This paper aims to develop a dynamic simulation model for the reduction of energy consumption through the use of organic waste from a residential district, supplied by a hybrid renewable energy plant. The proposed layout is based on a novel paradigm of a renewable energy community focused on the biocircular economy and a sustainable approach. The novelty with respect to the majority of papers developed in the literature on renewable energy communities lies in the use of both solar photovoltaic production and the organic fraction of municipal solid waste collected by the community. Energy production by biomass conversion and by photovoltaic fields shared among the buildings is used to satisfy in a sustainable manner the community loads for heating, cooling, and power. The district heating network is based on water loop heat pumps and air-to-air heat pumps and it includes the power-to-heat energy storage strategy. The biogas produced by the anaerobic digestion process is cleaned in order to supply a solid oxide fuel cell for the production of additional power, mainly during the hours of poor or null solar energy production. Then, the layout integrates several innovative topics, such as the power-to-heat strategy, the biocircular economy, the low-temperature district heating, the use of a solid oxide fuel cell, and a renewable energy community. The dynamic model of the proposed hybrid renewable layout is developed in the TRNSYS environment, but some innovative energy components, such as anaerobic digestion, the biogas upgrading unit, and the solid oxide fuel cell, are dynamically modeled in MATLAB and then integrated into the whole plant model. The proposed plant has been confirmed to be extremely profitable and able to obtain important energy savings, considering the achieved payback period of 4.48 years and the primary energy saving of 23%. This layout resulted in an interesting solution for pushing the development of smart and sustainable cities.

Publisher

MDPI AG

Reference52 articles.

1. Hybrid energy networks and electrification of district heating under different energy system conditions;Energy Rep.,2021

2. The impact of the Russian-Ukrainian war on global financial markets;Izzeldin;Int. Rev. Financ. Anal.,2023

3. Pörtner, H.O., Roberts, D.C., Adams, H., Adler, C., Aldunce, P., Ali, E., Ara Begum, R., Betts, R., Bezner Kerr, R., and Biesbroek, R. (2022). Summary for Policymakers. IPCC Report, Climate Change 2022: Impacts, Adaptation and Vulnerability, Cambridge University Press.

4. Dynamics of systemic risk in European gas and oil markets under the Russia–Ukraine conflict: A quantile regression neural network approach;Zhou;Energy Rep.,2023

5. Impact of H2-enriched natural gas on pollutant emissions from domestic condensing boilers: Numerical simulations of the combustion chamber;Lamioni;Int. J. Hydrogen Energy,2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3