Edge-Based Transfer Learning for Classroom Occupancy Detection in a Smart Campus Context

Author:

Monti LorenzoORCID,Tse Rita,Tang Su-KitORCID,Mirri SilviaORCID,Delnevo GiovanniORCID,Maniezzo VittorioORCID,Salomoni PaolaORCID

Abstract

Studies and systems that are aimed at the identification of the presence of people within an indoor environment and the monitoring of their activities and flows have been receiving more attention in recent years, specifically since the beginning of the COVID-19 pandemic. This paper proposes an approach for people counting that is based on the use of cameras and Raspberry Pi platforms, together with an edge-based transfer learning framework that is enriched with specific image processing strategies, with the aim of this approach being adopted in different indoor environments without the need for tailored training phases. The system was deployed on a university campus, which was chosen as the case study. The proposed system was able to work in classrooms with different characteristics. This paper reports a proposed architecture that could make the system scalable and privacy compliant and the evaluation tests that were conducted in different types of classrooms, which demonstrate the feasibility of this approach. Overall, the system was able to count the number of people in classrooms with a maximum mean absolute error of 1.23.

Funder

Macao Polytechnic University

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3