Oxidative Stress in Far Eastern Mussel Mytilus trossulus (Gould, 1850) Exposed to Combined Polystyrene Microspheres (µPSs) and CuO-Nanoparticles (CuO-NPs)

Author:

Dovzhenko Nadezda VladimirovnaORCID,Chelomin Victor Pavlovich,Mazur Andrey AlexandrovichORCID,Kukla Sergey Petrovich,Slobodskova Valentina Vladimirovna,Istomina Aleksandra Anatolievna,Zhukovskaya Avianna Fayazovna

Abstract

The ingress of nanoparticles of metal oxides and microfragments of synthetic polymers (microplastics) into a marine environment causes unpredictable consequences. The effects of such particles cannot be predicted due to a lack of ecotoxicological information. In this research, a series of laboratory experiments were conducted on the combined effects of CuO-nanoparticles (CuO-NPs) and polystyrene microspheres (µPSs) on the development of oxidative stress processes in the marine filter-feeder mollusk Mytilus trossulus. Biomarkers of oxidative stress, including the lysosome membrane stability of hematocytes (LMS), the index of antioxidant activity (IAA), the levels of malonaldehyde (MDA) and protein carbonyls (PCs), and DNA damage in digestive gland cells, were measured after 5 days of exposure. Based on a battery of biochemical markers, it was shown that oxidative stress was induced at varying degrees in the experimental mollusks when exposed to CuO-NPs and µPSs both separately and in combination. In contrast, the single-treatment effect on the lysosomal membrane was enhanced by the combined CuO-NPs and µPSs (from 77.14 ± 8.56 to 42 ± 4.26 min). In addition, exposure to both the compounds alone and in combination decreased the IAA (from 22.87 ± 1.25, to 19.55 ± 0.21, 10.73 ± 0.53, and 12.06 ± 1.62 nM/mg protein, respectively). The PC level significantly increased only after CuO-NP exposure (from 0.496 ± 0.02 to 0.838 ± 0.03 μM/mg protein). Furthermore, the results showed that the investigated particles, both alone and in combination, promoted DNA damage in digestive gland cells (from 2.02 ± 0.52 to 5.15 ± 0.37, 18.29 ± 2.14, and 10.72 ± 2.53%, respectively), indicating that these compounds are genotoxic. Overall, the results obtained suggest that oxidative stress is the leading factor in the negative effects of CuO-NPs and µPSs. Considering the exceptional role of genome integrity in the functioning of biological systems, the revealed damages in the DNA molecule structure should be attributed to the most important manifestations of the toxicity of these two forms of marine pollution.

Funder

state assignment for research work of V.I. Il’ichev Pacific Oceanological Institute

Publisher

MDPI AG

Subject

Ocean Engineering,Water Science and Technology,Civil and Structural Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3