Information Rich Voxel Grid for Use in Heterogeneous Multi-Agent Robotics

Author:

Balding Steven1,Gning Amadou1,Cheng Yongqiang1ORCID,Iqbal Jamshed1ORCID

Affiliation:

1. School of Computer Science, Faculty of Science and Engineering, University of Hull, Hull HU6 7RX, UK

Abstract

Robotic agents are now ubiquitous in both home and work environments; moreover, the degree of task complexity they can undertake is also increasing exponentially. Now that advanced robotic agents are commonplace, the question for utilisation becomes how to enable collaboration of these agents, and indeed, many have considered this over the last decade. If we can leverage the heterogeneous capabilities of multiple agents, not only can we achieve more complex tasks, but we can better position the agents in more chaotic environments and compensate for lacking systems in less sophisticated agents. Environments such as search and rescue, agriculture, autonomous vehicles, and robotic maintenance are just a few examples of complex domains that can leverage collaborative robotics. If the use of a robotic agent is fruitful, the question should be: How can we provide a world state and environment mapping, combined with a communication method, that will allow these robotic agents to freely communicate? Moreover, how can this be decentralised such that agents can be introduced to new and existing environments already understood by other agents? The key problem that is faced is the communication method; however, when looking deeper we also need to consider how the change of an environment is mapped while considering that there are multiple differing sensors. To this end, we present the voxel grid approach for use in a decentralised robotic colony. To validate this, results are presented to show how the single-agent and multiagent systems compare.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3