A Lightweight Deep Learning Model for Automatic Modulation Classification Using Residual Learning and Squeeze–Excitation Blocks

Author:

Nisar Malik Zohaib1ORCID,Ibrahim Muhammad Sohail1ORCID,Usman Muhammad1ORCID,Lee Jeong-A1ORCID

Affiliation:

1. Department of Computer Engineering, Chosun University, Gwangju 61452, Republic of Korea

Abstract

Automatic modulation classification (AMC) is a vital process in wireless communication systems that is fundamentally a classification problem. It is employed to automatically determine the type of modulation of a received signal. Deep learning (DL) methods have gained popularity in addressing the problem of modulation classification, as they automatically learn the features without needing technical expertise. However, their efficacy depends on the complexity of the algorithm, which can be characterized by the number of parameters. In this research, we presented a deep learning algorithm for AMC, inspired by residual learning, which has remarkable accuracy and great representational ability. We also employed a squeeze-and-excitation network that is capable of exploiting modeling interconnections between channels and adaptively re-calibrates the channel-wise feature response to improve performance. The proposed network was designed to meet the accuracy requirements with a reduced number of parameters for efficiency. The proposed model was evaluated on two benchmark datasets and compared with existing methods. The results show that the proposed model outperforms existing methods in terms of accuracy and has up to 72.5% fewer parameters than convolutional neural network designs.

Funder

Chosun University

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3