Affiliation:
1. Department of Computer Engineering, Chosun University, Gwangju 61452, Republic of Korea
Abstract
Automatic modulation classification (AMC) is a vital process in wireless communication systems that is fundamentally a classification problem. It is employed to automatically determine the type of modulation of a received signal. Deep learning (DL) methods have gained popularity in addressing the problem of modulation classification, as they automatically learn the features without needing technical expertise. However, their efficacy depends on the complexity of the algorithm, which can be characterized by the number of parameters. In this research, we presented a deep learning algorithm for AMC, inspired by residual learning, which has remarkable accuracy and great representational ability. We also employed a squeeze-and-excitation network that is capable of exploiting modeling interconnections between channels and adaptively re-calibrates the channel-wise feature response to improve performance. The proposed network was designed to meet the accuracy requirements with a reduced number of parameters for efficiency. The proposed model was evaluated on two benchmark datasets and compared with existing methods. The results show that the proposed model outperforms existing methods in terms of accuracy and has up to 72.5% fewer parameters than convolutional neural network designs.
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献