Terahertz Meets AI: The State of the Art

Author:

Farhad Arshad1ORCID,Pyun Jae-Young1ORCID

Affiliation:

1. Department of Information and Communication Engineering, Chosun University, Gwangju 61452, Republic of Korea

Abstract

Terahertz (THz) is a promising technology for future wireless communication networks, particularly for 6G and beyond. The ultra-wide THz band, ranging from 0.1 to 10 THz, can potentially address the limited capacity and scarcity of spectrum in current wireless systems such as 4G-LTE and 5G. Furthermore, it is expected to support advanced wireless applications requiring high data transmission and quality services, i.e., terabit-per-second backhaul systems, ultra-high-definition streaming, virtual/augmented reality, and high-bandwidth wireless communications. In recent years, artificial intelligence (AI) has been used mainly for resource management, spectrum allocation, modulation and bandwidth classification, interference mitigation, beamforming, and medium access control layer protocols to improve THz performance. This survey paper examines the use of AI in state-of-the-art THz communications, discussing the challenges, potentials, and shortcomings. Additionally, this survey discusses the available platforms, including commercial, testbeds, and publicly available simulators for THz communications. Finally, this survey provides future strategies for improving the existing THz simulators and using AI methods, including deep learning, federated learning, and reinforcement learning, to improve THz communications.

Funder

Chosun University

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3