Dynamic Modeling and Characteristic Analysis of Articulated Steering Vehicles

Author:

Gao Lulu12,Dong Yueqi1,Zhao Jixing1

Affiliation:

1. School of Mechanical Engineering, University of Science & Technology Beijing, Beijing 100083, China

2. Shunde Innovation School, University of Science & Technology Beijing, Foshan 528399, China

Abstract

Articulated steering vehicles (ASVs), with brilliant maneuverability and efficiency, are being widely applied in mining, construction, agriculture, and forestry. However, their special structures result in them having complex dynamic characteristics, but there are no reliable models for further research. This study established a simulation platform with the dynamic model of ASVs, where the subsystems of the power train, steering systems, tires, and frames were also included. The dynamic model was validated with field test data of typical working cycles, in which the focus was on longitudinal and lateral motions and the characteristics of steering and power train systems. Then, the distribution of hydraulic and drive power was revealed using the simulation platform and test data. For a load–haul–dump (LHD) vehicle with a 6 m3 capacity, the maximum power of the system was about 289 kW; the power of the motor accounted for the majority of the power at the beginning stage of loading, being about 74%, and then the hydraulic power dominated in the later stage of loading. During the transport stage, the power of the motor accounted for about 79% of the total power. Finally, the influence of the dynamic parameters on lateral and longitudinal motions was analyzed based on the validated platform.

Funder

National Natural Science Foundation of China

the fellowship of China Postdoctoral Science Foundation

Postdoctoral Science Foundation of Shunde Innovation School

Special fund for scientific and technological innovation in Foshan

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3