Multi-Class Transfer Learning and Domain Selection for Cross-Subject EEG Classification

Author:

Maswanganyi Rito Clifford1,Tu Chungling1,Owolawi Pius Adewale1ORCID,Du Shengzhi2

Affiliation:

1. Department of Computer Systems Engineering, Tshwane University of Technology, Pretoria 0002, South Africa

2. Department of Electrical Engineering, Tshwane University of Technology, Pretoria 0002, South Africa

Abstract

Transfer learning (TL) has been proven to be one of the most significant techniques for cross-subject classification in electroencephalogram (EEG)-based brain-computer interfaces (BCI). Hence, it is widely used to address the challenges of cross-session and cross-subject variability with more accurate intention prediction. In this case, TL utilizes knowledge (signal features) in the source domain(s) to improve the classification in the target domain. However, current existing transfer learning approaches on EEG-based BCI are mostly limited to two-class cross-subject classification problems, while multi-class problems are only implemented with a focus on within-subject classification due to the complexity of multi-class cross-subject classification problems. In this paper, we first extended the transfer learning approaches to a multi-class cross-subject scenario, then investigated the reason for transfer learning performance being poor in multi-class cross-subject classification. Secondly, we address the challenge of significant sessional and subject-to-subject variations originating from both known and unknown factors. It is discovered that such variations have a massive influence on the classification because of the negative transfer (NT) across domains. Based on this discovery, we propose a multi-class transfer learning approach based on multi-source manifold feature transfer learning (MMFT) framework and an enhanced version to minimize the effects of NT. The proposed multi-class transfer learning approach extends the existing MMFT to multi-class cases. Then enhanced multi-class MMFT firstly searches for domains with high transferability and selects only the best combination among source domains (SD), then utilize the best-selected combination of domains for transfer learning. Experimental results illustrate that the proposed multi-class MMFT can be employed in the cross-subject classification of both three-class and four-class problems. Experimental results also demonstrated that the enhanced multi-class MMFT could effectively minimize the effect of negative transfer and significantly increase the prediction rates across individual target domains (TD). The highest classification accuracy (CA) of 98% is obtained by the enhanced multi-class MMFT.

Funder

National Research Foundation of South Africa

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3