Comparison of Domain Selection Methods for Multi-Source Manifold Feature Transfer Learning in Electroencephalogram Classification

Author:

Maswanganyi Rito Clifford1,Tu Chungling1,Owolawi Pius Adewale1ORCID,Du Shengzhi2ORCID

Affiliation:

1. Department of Computer Systems Engineering, Tshwane University of Technology, Pretoria 0002, South Africa

2. Department of Electrical Engineering, Tshwane University of Technology, Pretoria 0002, South Africa

Abstract

Transfer learning (TL) utilizes knowledge from the source domain (SD) to enhance the classification rate in the target domain (TD). It has been widely used to address the challenge of sessional and inter-subject variations in electroencephalogram (EEG)-based brain–computer interfaces (BCIs). However, utilizing knowledge from a combination of both related and non-related sources can significantly deteriorate the classification performance across individual target domains, resulting in a negative transfer (NT). Hence, NT becomes one of the most significant challenges for transfer learning algorithms. Notably, domain selection techniques have been developed to address the challenge of NT emerging from the transfer of knowledge from non-related sources. However, existing domain selection approaches iterate through domains and remove a single low-beneficial domain at a time, which can massively affect the classification performance in each iteration since SDs respond differently to other sources. In this paper, we compare domain selection techniques for a multi-source manifold feature transfer learning (MMFT) framework to address the challenge of NT and then evaluate the effect of beneficial and non-beneficial sources on TL performance. To evaluate the effect of low-beneficial and high beneficial sources on TL performance, some commonly used domain selection methods are compared, namely, domain transferability estimation (DTE), rank of domain (ROD), label similarity analysis, and enhanced multi-class MMFT (EMC-MMFT), using the same multi-class cross-session and cross-subject classification problems. The experimental results demonstrate the superiority of the EMC-MMFT algorithm in terms of minimizing the effect of NT. The highest classification accuracy (CA) of 100% is achieved when optimal combinations of high beneficial sources are selected for two-class SSMVEP problems, while the highest CAs of 98% and 87% are achieved for three- and four-class SSMVEP problems, respectively. The highest CA of 98% is achieved for two-class MI classification problems, while the highest CAs of 90% and 71.5% are obtained for three- and four-class MI problems, respectively.

Funder

National Research Foundation of South Africa

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3