Experimental Study on Mode I Fracture Characteristics of Granite after Low Temperature Cooling with Liquid Nitrogen

Author:

Wang Linchao1,Xue Yi1,Cao Zhengzheng2,Kong Hailing3ORCID,Han Jianyong4ORCID,Zhang Zhizhen5ORCID

Affiliation:

1. State Key Laboratory of Eco-Hydraulics in Northwest Arid Region, Xi’an University of Technology, Xi’an 710048, China

2. International Joint Research Laboratory of Henan Province for Underground Space Development and Disaster Prevention, Henan Polytechnic University, Jiaozuo 454000, China

3. College of Civil Engineering, Yancheng Institute of Technology, Yancheng 224051, China

4. School of Civil Engineering, Shandong Jianzhu University, Jinan 250101, China

5. School of Mechanics and Civil Engineering, China University of Mining and Technology, Xuzhou 221116, China

Abstract

Liquid nitrogen fracturing has emerged as a promising technique in fluid fracturing, providing significant advantages for the utilization and development of geothermal energy. Similarly to hydraulic fracturing in reservoirs, liquid nitrogen fracturing entails a common challenge of fluid–rock interaction, encompassing the permeation and diffusion processes of fluids within rock pores and fractures. Geomechanical analysis plays a crucial role in evaluating the transfer and diffusion capabilities of fluids within rocks, enabling the prediction of fracturing outcomes and fracture network development. This technique is particularly advantageous for facilitating heat exchange with hot dry rocks and inducing fractures within rock formations. The primary objective of this study is to examine the effects of liquid nitrogen fracturing on hot dry rocks, focusing specifically on granite specimens. The experimental design comprises two sets of granite samples to explore the impact of liquid nitrogen cooling cycles on the mode I fracture characteristics, acoustic emission features, and rock burst tendency of granite. By examining the mechanical properties, acoustic emission features, and rock burst tendencies under different cycling conditions, the effectiveness of liquid nitrogen fracturing technology is revealed. The results indicate that: (1) The ultimate load-bearing capacity of the samples gradually decreases with an increase in the number of cycling times. (2) The analysis of acoustic emission signals reveals a progressive increase in the cumulative energy of the samples with cycling times, indicating that cycling stimulates the release of stored energy within the samples. (3) After undergoing various cycling treatments, the granite surface becomes rougher, exhibiting increased porosity and notable mineral particle detachment. These results suggest that the cyclic application of high-temperature heating and liquid nitrogen cooling promotes the formation of internal fractures in granite. This phenomenon is believed to be influenced by the inherent heterogeneity and expansion–contraction of internal particles. Furthermore, a detailed analysis of the morphological sections provides insights into the structural changes induced by liquid nitrogen fracturing in granite samples.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3