Affiliation:
1. School of Mechanics and Civil Engineering China University of Mining and Technology Xuzhou China
2. State Key Laboratory for Geomechanics and Deep Underground Engineering China University of Mining and Technology Xuzhou China
3. College of Water Conservancy and Hydropower Engineering Hohai University Nanjing China
4. School of Engineering University of Tasmania Hobart Tasmania Australia
5. Center for Offshore Research and Engineering National University of Singapore Singapore Singapore
Abstract
AbstractPrecipitation or dissolution due to geochemical reactions has been observed in the caprocks for CO2 geosequestration. Geochemical reactions modify the caprock sealing efficiency with self‐limiting or self‐enhancement. However, the effect of this modification on the caprock sealing efficiency has not been fully investigated through multiphysical‐geochemical coupling analysis. In this study, a multiphysical‐geochemical coupling model was proposed to analyze caprock sealing efficiency. This coupling model considered the full couplings of caprock deformation, two‐phase flow, CO2 concentration diffusion, geochemical reaction, and CO2 sorption. The two‐phase flow only occurs in the fracture network and the CO2 may partially dissolve into water and diffuse through the concentration difference. The dissolved CO2 has geochemical reactions with some critical minerals, thus altering flow channels. The CO2 in the fracture network diffuses into matrix, causing the matrix swelling. This fully coupling model was validated with a penetration experiment on a cement cube and compared with two other models for CO2 storage plumes. Finally, the effects of geochemical reactions on penetration depth and pore pressure were studied through parametric study. The numerical simulations reveal that the coupling of geochemical reactions and matrix diffusion significantly affect the caprock sealing efficiency. Geochemical reactions occur at a short time after the arrival of CO2 concentration and modify the fracture porosity. The CO2 diffusion into the matrix requires a much longer time and mainly induces matrix swelling. These effects may produce self‐enhancement or self‐limiting depending on the flow rate in the fracture network, thus significantly modifying caprock sealing efficiency.
Funder
National Natural Science Foundation of China
Cited by
11 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献