Opportunities and challenges for gas coproduction from coal measure gas reservoirs with coal‐shale‐tight sandstone layers: A review

Author:

Liang Wei12,Wang Jianguo13ORCID,Leung Chunfai2,Goh Sianghuat2,Sang Shuxun4

Affiliation:

1. State Key Laboratory for Geomechanics and Deep Underground Engineering China University of Mining and Technology Xuzhou China

2. Department of Civil and Environmental Engineering National University of Singapore Singapore Singapore

3. School of Mechanics and Civil Engineering China University of Mining and Technology Xuzhou China

4. Low Carbon Energy Institute China University of Mining and Technology Xuzhou China

Abstract

AbstractThe extraction of coal measure gas has been shifted toward thin gas reservoirs due to the depletion of medium‐thick gas reservoirs. The coproduction of coalbed gas, shale gas, and tight sandstone gas (called a multisuperposed gas system) is a key low‐cost technology for the enhancement of natural gas production from thin gas reservoirs in coal measure. As an emerging engineering exploitation technology at its early stage of development, gas coproduction confronts various engineering challenges in hydraulic fracturing, bottom‐hole pressure regulation, well network arrangement, and extraction sequence. The current understanding of the opportunities and challenges in the gas coproduction from the multisuperposed gas system is not comprehensive enough. In this case, the previous achievements in the field of gas coproduction should be urgently reviewed to provide valuable guidance and recommendations for further development. This review first discusses the regional and spatial distribution characteristics and possible reservoir combinations of gas reservoirs in coal measure. Then, the basic properties of different reservoirs, engineering challenges, and interlayer interference are comparatively analyzed and discussed. The current simulation models for gas coproduction and potential future research directions are further explored. The results indicate that the coupling effects of reservoir heterogeneity, interwell interference, and geological structure for increasing coproduction prediction accuracy should be included in future simulation models for gas coproduction. Careful investigation is required to explore the mechanisms and their further quantifications on the effects of interlayer interference in gas coproduction. The fractal dimension as a scale can play an important role in the characterization of the gas and water transport in different reservoirs. The machine learning methods have tremendous potential to provide accurate and fast predictions for gas coproduction and interlayer interference.

Funder

China Scholarship Council

National Natural Science Foundation of China

Publisher

Wiley

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3