An Audio-Based SLAM for Indoor Environments: A Robotic Mixed Reality Presentation

Author:

Lahemer Elfituri S. F.1,Rad Ahmad1

Affiliation:

1. Autonomous and Intelligent Systems Laboratory, School of Mechatronic Systems Engineering, Simon Fraser University, Surrey, BC V3T 0A3, Canada

Abstract

In this paper, we present a novel approach referred to as the audio-based virtual landmark-based HoloSLAM. This innovative method leverages a single sound source and microphone arrays to estimate the voice-printed speaker’s direction. The system allows an autonomous robot equipped with a single microphone array to navigate within indoor environments, interact with specific sound sources, and simultaneously determine its own location while mapping the environment. The proposed method does not require multiple audio sources in the environment nor sensor fusion to extract pertinent information and make accurate sound source estimations. Furthermore, the approach incorporates Robotic Mixed Reality using Microsoft HoloLens to superimpose landmarks, effectively mitigating the audio landmark-related issues of conventional audio-based landmark SLAM, particularly in situations where audio landmarks cannot be discerned, are limited in number, or are completely missing. The paper also evaluates an active speaker detection method, demonstrating its ability to achieve high accuracy in scenarios where audio data are the sole input. Real-time experiments validate the effectiveness of this method, emphasizing its precision and comprehensive mapping capabilities. The results of these experiments showcase the accuracy and efficiency of the proposed system, surpassing the constraints associated with traditional audio-based SLAM techniques, ultimately leading to a more detailed and precise mapping of the robot’s surroundings.

Funder

Simon Fraser University

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3