Modeling, Validation, and Performance of Two Tandem Cylinder Piezoelectric Energy Harvesters in Water Flow

Author:

Song RujunORCID,Hou ChengweiORCID,Yang Chongqiu,Yang Xianhai,Guo Qianjian,Shan Xiaobiao

Abstract

This paper studies a novel enhanced energy-harvesting method to harvest water flow-induced vibration with a tandem arrangement of two piezoelectric energy harvesters (PEHs) in the direction of flowing water, through simulation modeling and experimental validation. A mathematical model is established by two individual-equivalent single-degree-of-freedom models, coupled with the hydrodynamic force obtained by computational fluid dynamics. Through the simulation analysis, the variation rules of vibration frequency, vibration amplitude, power generation and the distribution of flow field are obtained. And experimental tests are performed to verify the numerical calculation. The experimental and simulation results show that the upstream piezoelectric energy harvester (UPEH) is excited by the vortex-induced vibration, and the maximum value of performance is achieved when the UPEH and the vibration are resonant. As the vortex falls off from the UPEH, the downstream piezoelectric energy harvester (DPEH) generates a responsive beat frequency vibration. Energy-harvesting performance of the DPEH is better than that of the UPEH, especially at high speed flows. The maximum output power of the DPEH (371.7 μW) is 2.56 times of that of the UPEH (145.4 μW), at a specific spacing between the UPEN and the DPEH. Thereupon, the total output power of the two tandem piezoelectric energy harvester systems is significantly greater than that of the common single PEH, which provides a good foreground for further exploration of multiple piezoelectric energy harvesters system.

Funder

National Natural Science Foundation of China

Key Research and Development Project of Shandong Province

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Mechanical Engineering,Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3