Scanning Hyperspectral Imaging for In Situ Biogeochemical Analysis of Lake Sediment Cores: Review of Recent Developments

Author:

Zander Paul D.ORCID,Wienhues Giulia,Grosjean Martin

Abstract

Hyperspectral imaging (HSI) in situ core scanning has emerged as a valuable and novel tool for rapid and non-destructive biogeochemical analysis of lake sediment cores. Variations in sediment composition can be assessed directly from fresh sediment surfaces at ultra-high-resolution (40–300 μm measurement resolution) based on spectral profiles of light reflected from sediments in visible, near infrared, and short-wave infrared wavelengths (400–2500 nm). Here, we review recent methodological developments in this new and growing field of research, as well as applications of this technique for paleoclimate and paleoenvironmental studies. Hyperspectral imaging of sediment cores has been demonstrated to effectively track variations in sedimentary pigments, organic matter, grain size, minerogenic components, and other sedimentary features. These biogeochemical variables record information about past climatic conditions, paleoproductivity, past hypolimnetic anoxia, aeolian input, volcanic eruptions, earthquake and flood frequencies, and other variables of environmental relevance. HSI has been applied to study seasonal and inter-annual environmental variability as recorded in individual varves (annually laminated sediments) or to study sedimentary records covering long glacial–interglacial time-scales (>10,000 years).

Funder

Swiss National Science Foundation

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Graphics and Computer-Aided Design,Computer Vision and Pattern Recognition,Radiology, Nuclear Medicine and imaging

Reference87 articles.

1. Tracking Environmental Change Using Lake Sediments. Volume 3: Terrestrial, Algal, and Siliceous Indicators;Smol,2001

2. Tracking Environmental Change Using Lake Sediments. Volume 2: Physical and Geochemical Methods;Last,2001

3. New techniques in sediment core analysis: an introduction

4. Image Analysis, Sediments and Paleoenvironments;Francus,2005

5. Micro-XRF Studies of Sediment Cores: Applications of a Non-Destructive Tool for the Environmental Sciences;Croudace,2015

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3