Overcoming Dimensionality Constraints: A Gershgorin Circle Theorem-Based Feature Extraction for Weighted Laplacian Matrices in Computer Vision Applications

Author:

Patel Sahaj Anilbhai1,Yildirim Abidin1ORCID

Affiliation:

1. Department of Electrical and Computer, University of Alabama at Birmingham, Birmingham, AL 35205, USA

Abstract

In graph theory, the weighted Laplacian matrix is the most utilized technique to interpret the local and global properties of a complex graph structure within computer vision applications. However, with increasing graph nodes, the Laplacian matrix’s dimensionality also increases accordingly. Therefore, there is always the “curse of dimensionality”; In response to this challenge, this paper introduces a new approach to reducing the dimensionality of the weighted Laplacian matrix by utilizing the Gershgorin circle theorem by transforming the weighted Laplacian matrix into a strictly diagonal domain and then estimating rough eigenvalue inclusion of a matrix. The estimated inclusions are represented as reduced features, termed GC features; The proposed Gershgorin circle feature extraction (GCFE) method was evaluated using three publicly accessible computer vision datasets, varying image patch sizes, and three different graph types. The GCFE method was compared with eight distinct studies. The GCFE demonstrated a notable positive Z-score compared to other feature extraction methods such as I-PCA, kernel PCA, and spectral embedding. Specifically, it achieved an average Z-score of 6.953 with the 2D grid graph type and 4.473 with the pairwise graph type, particularly on the E_Balanced dataset. Furthermore, it was observed that while the accuracy of most major feature extraction methods declined with smaller image patch sizes, the GCFE maintained consistent accuracy across all tested image patch sizes. When the GCFE method was applied to the E_MNSIT dataset using the K-NN graph type, the GCFE method confirmed its consistent accuracy performance, evidenced by a low standard deviation (SD) of 0.305. This performance was notably lower compared to other methods like Isomap, which had an SD of 1.665, and LLE, which had an SD of 1.325; The GCFE outperformed most feature extraction methods in terms of classification accuracy and computational efficiency. The GCFE method also requires fewer training parameters for deep-learning models than the traditional weighted Laplacian method, establishing its potential for more effective and efficient feature extraction in computer vision tasks.

Publisher

MDPI AG

Reference30 articles.

1. Graph neural networks: A review of methods and applications;Zhou;AI Open,2020

2. Applications of graph theory in chemistry;Balaban;J. Chem. Inf. Comput. Sci.,1985

3. Majeed, A., and Rauf, I. (2020). Graph theory: A comprehensive survey about graph theory applications in computer science and social networks. Inventions, 5.

4. Norcliffe-Brown, W., Vafeias, S., and Parisot, S. (2018, January 3–8). Learning conditioned graph structures for interpretable visual question answering. Proceedings of the Advances in Neural Information Processing Systems, Montreal, QC, Canada.

5. Belkin, M., and Niyogi, P. (2001, January 3–8). Laplacian eigenmaps and spectral techniques for embedding and clustering. Proceedings of the Advances in Neural Information Processing Systems, Vancouver, BC, Canada.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3