A Novel Clustering Algorithm Integrating Gershgorin Circle Theorem and Nonmaximum Suppression for Neural Spike Data Analysis

Author:

Patel Sahaj Anilbhai1,Yildirim Abidin1ORCID

Affiliation:

1. Department of Electrical and Computer, University of Alabama at Birmingham, Birmingham, AL 35205, USA

Abstract

(1) Problem Statement: The development of clustering algorithms for neural recordings has significantly evolved, reaching a mature stage with predominant approaches including partitional, hierarchical, probabilistic, fuzzy logic, density-based, and learning-based clustering. Despite this evolution, there remains a need for innovative clustering algorithms that can efficiently analyze neural spike data, particularly in handling diverse and noise-contaminated neural recordings. (2) Methodology: This paper introduces a novel clustering algorithm named Gershgorin—nonmaximum suppression (G–NMS), which incorporates the principles of the Gershgorin circle theorem, and a deep learning post-processing method known as nonmaximum suppression. The performance of G–NMS was thoroughly evaluated through extensive testing on two publicly available, synthetic neural datasets. The evaluation involved five distinct groups of experiments, totaling eleven individual experiments, to compare G–NMS against six established clustering algorithms. (3) Results: The results highlight the superior performance of G–NMS in three out of five group experiments, achieving high average accuracy with minimal standard deviation (SD). Specifically, in Dataset 1, experiment S1 (various SNRs) recorded an accuracy of 99.94 ± 0.01, while Dataset 2 showed accuracies of 99.68 ± 0.15 in experiment E1 (Easy 1) and 99.27 ± 0.35 in experiment E2 (Easy 2). Despite a slight decrease in average accuracy in the remaining two experiments, D1 (Difficult 1) and D2 (Difficult 2) from Dataset 2, compared to the top-performing clustering algorithms in these categories, G–NMS maintained lower SD, indicating consistent performance. Additionally, G–NMS demonstrated robustness and efficiency across various noise-contaminated neural recordings, ranging from low to high signal-to-noise ratios. (4) Conclusions: G–NMS’s integration of deep learning techniques and eigenvalue inclusion theorems has proven highly effective, marking a significant advancement in the clustering domain. Its superior performance, characterized by high accuracy and low variability, opens new avenues for the development of high-performing clustering algorithms, contributing significantly to the body of research in this field.

Publisher

MDPI AG

Reference30 articles.

1. Carter, M., and Shieh, J.C. (2015). Guide to Research Techniques in Neuroscience, Academic Press.

2. Past, present and future of spike sorting techniques;Rey;Brain Res. Bull.,2015

3. A review of methods for spike sorting: The detection and classification of neural action potentials;Lewicki;Netw. Comput. Neural Syst.,1998

4. Some methods for classification and analysis of multivariate observations;MacQueen;Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics and Probability,1967

5. Unsupervised waveform classification for multi-neuron recordings: A real-time, software-based system. I. Algorithms and implementation;Salganicoff;J. Neurosci. Methods,1988

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3