CorDeep and the Sacrobosco Dataset: Detection of Visual Elements in Historical Documents

Author:

Büttner JochenORCID,Martinetz JuliusORCID,El-Hajj HassanORCID,Valleriani MatteoORCID

Abstract

Recent advances in object detection facilitated by deep learning have led to numerous solutions in a myriad of fields ranging from medical diagnosis to autonomous driving. However, historical research is yet to reap the benefits of such advances. This is generally due to the low number of large, coherent, and annotated datasets of historical documents, as well as the overwhelming focus on Optical Character Recognition to support the analysis of historical documents. In this paper, we highlight the importance of visual elements, in particular illustrations in historical documents, and offer a public multi-class historical visual element dataset based on the Sphaera corpus. Additionally, we train an image extraction model based on YOLO architecture and publish it through a publicly available web-service to detect and extract multi-class images from historical documents in an effort to bridge the gap between traditional and computational approaches in historical studies.

Funder

Federal Ministry of Education and Research

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Graphics and Computer-Aided Design,Computer Vision and Pattern Recognition,Radiology, Nuclear Medicine and imaging

Reference53 articles.

1. Large-scale book digitization in historical context

2. Sacrobosco Visual Element Dataset (S-VED)https://zenodo.org/record/7142456#.Y0zC5ExByUk

3. Deep Learning for Historical Document Analysis and Recognition—A Survey

4. Machine printed text and handwriting identification in noisy document images

5. U-Net: Convolutional Networks for Biomedical Image Segmentation;Ronneerger;Proceedings of the Medical Image Computing and Computer Assisted Intervention—MICCAI 2015,2015

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3