Abstract
Nowadays, deep learning methods are employed in a broad range of research fields. The analysis and recognition of historical documents, as we survey in this work, is not an exception. Our study analyzes the papers published in the last few years on this topic from different perspectives: we first provide a pragmatic definition of historical documents from the point of view of the research in the area, then we look at the various sub-tasks addressed in this research. Guided by these tasks, we go through the different input-output relations that are expected from the used deep learning approaches and therefore we accordingly describe the most used models. We also discuss research datasets published in the field and their applications. This analysis shows that the latest research is a leap forward since it is not the simple use of recently proposed algorithms to previous problems, but novel tasks and novel applications of state of the art methods are now considered. Rather than just providing a conclusive picture of the current research in the topic we lastly suggest some potential future trends that can represent a stimulus for innovative research directions.
Subject
Electrical and Electronic Engineering,Computer Graphics and Computer-Aided Design,Computer Vision and Pattern Recognition,Radiology Nuclear Medicine and imaging
Cited by
57 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献