Abstract
Colorectal cancer (CRC) is a leading cause of mortality worldwide, and preventive screening modalities such as colonoscopy have been shown to noticeably decrease CRC incidence and mortality. Improving colonoscopy quality remains a challenging task due to limiting factors including the training levels of colonoscopists and the variability in polyp sizes, morphologies, and locations. Deep learning methods have led to state-of-the-art systems for the identification of polyps in colonoscopy videos. In this study, we show that deep learning can also be applied to the segmentation of polyps in real time, and the underlying models can be trained using mostly weakly labeled data, in the form of bounding box annotations that do not contain precise contour information. A novel dataset, Polyp-Box-Seg of 4070 colonoscopy images with polyps from over 2000 patients, is collected, and a subset of 1300 images is manually annotated with segmentation masks. A series of models is trained to evaluate various strategies that utilize bounding box annotations for segmentation tasks. A model trained on the 1300 polyp images with segmentation masks achieves a dice coefficient of 81.52%, which improves significantly to 85.53% when using a weakly supervised strategy leveraging bounding box images. The Polyp-Box-Seg dataset, together with a real-time video demonstration of the segmentation system, are publicly available.
Funder
National Institutes of Health
National Science Foundation
Subject
Electrical and Electronic Engineering,Computer Graphics and Computer-Aided Design,Computer Vision and Pattern Recognition,Radiology, Nuclear Medicine and imaging
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献