Fast Object Detection Leveraging Global Feature Fusion in Boundary-Aware Convolutional Networks

Author:

Fan Weiming1,Yu Jiahui2,Ju Zhaojie3

Affiliation:

1. School of Automation and Electrical Engineering, Shenyang Ligong University, Shenyang 110159, China

2. Department of Biomedical Engineering, Zhejiang University, Hangzhou 310058, China

3. School of computing, University of Portsmouth, Portsmouth PO1 3HE, UK

Abstract

Endoscopy, a pervasive instrument for the diagnosis and treatment of hollow anatomical structures, conventionally necessitates the arduous manual scrutiny of seasoned medical experts. Nevertheless, the recent strides in deep learning technologies proffer novel avenues for research, endowing it with the potential for amplified robustness and precision, accompanied by the pledge of cost abatement in detection procedures, while simultaneously providing substantial assistance to clinical practitioners. Within this investigation, we usher in an innovative technique for the identification of anomalies in endoscopic imagery, christened as Context-enhanced Feature Fusion with Boundary-aware Convolution (GFFBAC). We employ the Context-enhanced Feature Fusion (CEFF) methodology, underpinned by Convolutional Neural Networks (CNNs), to establish equilibrium amidst the tiers of the feature pyramids. These intricately harnessed features are subsequently amalgamated into the Boundary-aware Convolution (BAC) module to reinforce both the faculties of localization and classification. A thorough exploration conducted across three disparate datasets elucidates that the proposition not only surpasses its contemporaries in object detection performance but also yields detection boxes of heightened precision.

Funder

National Natural Science Foundation of China

Zhejiang Provincial Natural Science Foundation of China

Hangzhou Innovation Team

AiBle project co-financed by the European Regional Development Fund

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3