Blind Modulation Identification of Underwater Acoustic MPSK Using Sparse Bayesian Learning and Expectation Maximization

Author:

Fang Tao,Xia Zhi,Liu Songzuo,Wu Xiongbiao,Zhang Lanyue

Abstract

This paper presents a likelihood-based algorithm for identifying different phase shift keying (PSK) modulations, i.e., BPSK, QPSK, and 8PSK. This algorithm selects the modulation type that maximizes a loglikelihood function that is based on the known original constellation associated with the constellation of the received signals for the candidate modulation types. However, there are two problems in non-cooperative underwater acoustic Multiple Phase Shift Keying (MPSK) modulation identification based on the likelihood method. One is the original constellation, which as prior information is unknown. The other is the underwater acoustic multipath channel makes the constellation distort seriously. In this paper, we solved these problems by combining sparse bayesian learning (SBL) with expectation maximization (EM). The specific steps are as follows. Firstly, blind channel equalization can be achieved by channel impulse response (CIR), which is estimated by sparse bayesian learning in single input multi output (SIMO) underwater acoustic channel. Subsequently, we used expectation maximization to compensate amplitude attenuation and phase offset, as the original constellation of MPSK is unknown. Finally, modulation can be successfully identified by the Quasi Hybrid Likelihood Ratio Test (QHLRT). The simulation results show that the channel estimation method based on SBL can eliminate the influence of channel effectively, and the EM algorithm can make the received constellation converge to the preset constellation in the case of unknown original transmit constellation, which effectively solves these two problems. We use the proposed SBL-EM-QHLRT method to achieve an identification rate of more than 95% in underwater acoustic multipath channels with Signal to Noise Ratio (SNR) higher than 15 dB, which provides a new idea for modulation identification of non-cooperative underwater acoustic MPSK.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3