Abstract
Biosensors are of particular importance for the detection of biological analytes at low concentrations. Conducting polymer nanomaterials, which often serve as sensing transducers, are renowned for their small dimensions, high surface-to-volume ratio, and amplified sensitivity. Despite these traits, the widespread implementation of conventional conducting polymer nanomaterials is hampered by their scarcity and lack of structural uniformity. Herein, a brief overview of the latest developments in the synthesis of morphologically tunable conducting polymer-based biosensors is discussed. Research related to the dimensional (0, 1, 2, and 3D) hetero-nanostructures of conducting polymers are highlighted in this paper, and how these structures affect traits such as the speed of charge transfer processes, low-working temperature, high sensitivity and cycle stability are discussed.
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献