Dynamic Analysis of Cavitation Tip Vortex of Pump-Jet Propeller Based on DES

Author:

Yuan Jianping,Chen Yang,Wang Longyan,Fu Yanxia,Zhou Yunkai,Xu Jian,Lu Rong

Abstract

When a pump-jet propeller rotates at high speeds, a tip vortex is usually generated in the tip clearance region. This vortex interacts with the main channel fluid flow leading to the main energy loss of the rotor system. Moreover, operating at a high rotational speed can cause cavitation near the blades which may jeopardize the propulsion efficiency and induce noise. In order to effectively improve the propulsion efficiency of the pump-jet propeller, it is mandatory to research more about the energy loss mechanism in the tip clearance area. Due to the complex turbulence characteristics of the blade tip vortex, the widely used Reynolds averaged Navier–Stokes (RANS) method may not be able to accurately predict the multi-scale turbulent flow in the tip clearance. In this paper, an unsteady numerical simulation was conducted on the three-dimensional full flow field of a pump-jet propeller based on the DES (detached-eddy-simulation) turbulence model and the Z-G-B (Zwart–Gerber–Belamri) cavitation model. The simulation yielded the vortex shape and dynamic characteristics of the vortex core and the surrounding flow field in the tip clearance area. After cavitation occurred, the influence of cavitation bubbles on tip vortices was also studied. The results revealed two kinds of vortices in the tip clearance area, namely tip leakage vortex (TLV) and tip separation vortex (TSV). Slight cavitation at J = 1.02 led to low-frequency and high-frequency pulsation in the TLV vortex core. This occurrence of cavitation promotes the expansion and contraction of the tip vortex. Further, when the advance ratio changes into J = 0.73, a third type of vortex located between TLV and TSV appeared at the trailing edge which runs through the entire rotational cycle. This study has presented the dynamic characteristics of tip vortex including the relationship between cavitation bubbles and TLV inside the pump-jet propeller, which may provide a reference for the optimal design of future pump-jet propellers.

Funder

National Key Research and Development Plan Project

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference53 articles.

1. Marine Propellers and Propulsion;Carlton,2018

2. Cavitation inception and simulation in blade element momentum theory for modelling tidal stream turbines

3. Two-Dimensional Analysis of Rotor Suction and the Impact on Rotor-Stator Interaction Noise;Hayden,1994

4. Experimental evaluation of pumpjet propulsor for an axisymmetric body in wind tunnel

Cited by 29 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3