Memory-Based Deep Neural Attention (mDNA) for Cognitive Multi-Turn Response Retrieval in Task-Oriented Chatbots

Author:

Chen JenhuiORCID,Agbodike ObinnaORCID,Wang LeiORCID

Abstract

One of the important criteria used in judging the performance of a chatbot is the ability to provide meaningful and informative responses that correspond with the context of a user’s utterance. Nowadays, the number of enterprises adopting and relying on task-oriented chatbots for profit is increasing. Dialog errors and inappropriate response to user queries by chatbots can result in huge cost implications. To achieve high performance, recent AI chatbot models are increasingly adopting the Transformer positional encoding and the attention-based architecture. While the transformer performs optimally in sequential generative chatbot models, recent studies has pointed out the occurrence of logical inconsistency and fuzzy error problems when the Transformer technique is adopted in retrieval-based chatbot models. Our investigation discovers that the encountered errors are caused by information losses. Therefore, in this paper, we address this problem by augmenting the Transformer-based retrieval chatbot architecture with a memory-based deep neural attention (mDNA) model by using an approach similar to late data fusion. The mDNA is a simple encoder-decoder neural architecture that comprises of bidirectional long short-term memory (Bi-LSTM), attention mechanism, and a memory for information retention in the encoder. In our experiments, we trained the model extensively on a large Ubuntu dialog corpus, and the results from recall evaluation scores show that the mDNA augmentation approach slightly outperforms selected state-of-the-art retrieval chatbot models. The results from the mDNA augmentation approach are quite impressive.

Funder

Ministry of Science and Technology, Taiwan

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3