1. A. Hassan, A. Mahmood, Efficient deep learning model for text classification based on recurrent and convolutional layers, in: Proc. the 16th IEEE International Conference on Machine Learning and Applications (ICMLA), pp. 1108–1113.
2. O. Dušek, J. Novikova, V. Rieser, Evaluating the state-of-the-art of end-to-end natural language generation: The e2e nlg challenge, Computer Speech & Language 59 (2020) 123–156.
3. J. Chen, O. Agbodike, L. Wang, Memory-based deep neural attention (mdna) for cognitive multi-turn response retrieval in task-oriented chatbots, Applied Sciences 10 (2020).
4. J. Chen, O. Agbodike, W.-L. Kuo, L. Wang, C.-H. Huang, Y.-S. Shen, B.-H. Chen, Online textual symptomatic assessment chatbot based on q&a weighted scoring for female breast cancer prescreening, Applied Sciences 11 (2021).
5. L. Ouyang, J. Wu, X. Jiang, D. Almeida, C. Wainwright, P. Mishkin, C. Zhang, S. Agarwal, K. Slama, A. Ray, J. Schulman, J. Hilton, F. Kelton, L. Miller, M. Simens, A. Askell, P. Welinder, P. F. Christiano, J. Leike, R. Lowe, Training language models to follow instructions with human feedback, in: S. Koyejo, S. Mohamed, A. Agarwal, D. Belgrave, K. Cho, A. Oh (Eds.), Advances in Neural Information Processing Systems, volume 35, Curran Associates, Inc., 2022, pp. 27730–27744.