Classification of Dermoscopy Skin Lesion Color-Images Using Fractal-Deep Learning Features

Author:

Molina-Molina Edgar OmarORCID,Solorza-Calderón SeleneORCID,Álvarez-Borrego JosuéORCID

Abstract

The detection of skin diseases is becoming one of the priority tasks worldwide due to the increasing amount of skin cancer. Computer-aided diagnosis is a helpful tool to help dermatologists in the detection of these kinds of illnesses. This work proposes a computer-aided diagnosis based on 1D fractal signatures of texture-based features combining with deep-learning features using transferred learning based in Densenet-201. This proposal works with three 1D fractal signatures built per color-image. The energy, variance, and entropy of the fractal signatures are used combined with 100 features extracted from Densenet-201 to construct the features vector. Because commonly, the classes in the dataset of skin lesion images are imbalanced, we use the technique of ensemble of classifiers: K-nearest neighbors and two types of support vector machines. The computer-aided diagnosis output was determined based on the linear plurality vote. In this work, we obtained an average accuracy of 97.35%, an average precision of 91.61%, an average sensitivity of 66.45%, and an average specificity of 97.85% in the eight classes’ classification in the International Skin Imaging Collaboration (ISIC) archive-2019.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 22 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3