Classification of Skin Lesion Images Using Artificial Intelligence Methodologies through Radial Fourier–Mellin and Hilbert Transform Signatures

Author:

Guerra-Rosas Esperanza1,López-Ávila Luis Felipe2ORCID,Garza-Flores Esbanyely3,Vidales-Basurto Claudia Andrea2,Álvarez-Borrego Josué2ORCID

Affiliation:

1. Facultad de Ingeniería, Arquitectura y Diseño, Universidad Autónoma de Baja California, Km. 103 Carretera Tijuana-Ensenada, Ensenada 22860, Baja California, Mexico

2. Centro de Investigación Científica y de Educación Superior de Ensenada (CICESE), Baja California, Carretera Ensenada-Tijuana No. 3918, Zona Playitas, Ensenada 22860, Baja California, Mexico

3. SolexVintel, Santa Margarita 117, Colonia Insurgentes San Borja, Alcaldía Benito Juárez, Cd. De Mexico C. P. 03100, Mexico

Abstract

This manuscript proposes the possibility of concatenated signatures (instead of images) obtained from different integral transforms, such as Fourier, Mellin, and Hilbert, to classify skin lesions. Eight lesions were analyzed using some algorithms of artificial intelligence: basal cell carcinoma (BCC), squamous cell carcinoma (SCC), melanoma (MEL), actinic keratosis (AK), benign keratosis (BKL), dermatofibromas (DF), melanocytic nevi (NV), and vascular lesions (VASCs). Eleven artificial intelligence models were applied so that eight skin lesions could be classified by analyzing the signatures of each lesion. The database was randomly divided into 80% and 20% for the training and test dataset images, respectively. The metrics that are reported are accuracy, sensitivity, specificity, and precision. Each process was repeated 30 times to avoid bias, according to the central limit theorem in this work, and the averages and ± standard deviations were reported for each metric. Although all the results were very satisfactory, the highest average score for the eight lesions analyzed was obtained using the subspace k-NN model, where the test metrics were 99.98% accuracy, 99.96% sensitivity, 99.99% specificity, and 99.95% precision.

Funder

Centro de Investigación Científica y de Educación Superior de Ensenada (CICESE), Baja California

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3