Enhancing U-Net with Spatial-Channel Attention Gate for Abnormal Tissue Segmentation in Medical Imaging

Author:

Khanh Trinh Le BaORCID,Dao Duy-Phuong,Ho Ngoc-HuynhORCID,Yang Hyung-JeongORCID,Baek Eu-TteumORCID,Lee Gueesang,Kim Soo-Hyung,Yoo Seok BongORCID

Abstract

In recent years, deep learning has dominated medical image segmentation. Encoder-decoder architectures, such as U-Net, can be used in state-of-the-art models with powerful designs that are achieved by implementing skip connections that propagate local information from an encoder path to a decoder path to retrieve detailed spatial information lost by pooling operations. Despite their effectiveness for segmentation, these naïve skip connections still have some disadvantages. First, multi-scale skip connections tend to use unnecessary information and computational sources, where likable low-level encoder features are repeatedly used at multiple scales. Second, the contextual information of the low-level encoder feature is insufficient, leading to poor performance for pixel-wise recognition when concatenating with the corresponding high-level decoder feature. In this study, we propose a novel spatial-channel attention gate that addresses the limitations of plain skip connections. This can be easily integrated into an encoder-decoder network to effectively improve the performance of the image segmentation task. Comprehensive results reveal that our spatial-channel attention gate remarkably enhances the segmentation capability of the U-Net architecture with a minimal computational overhead added. The experimental results show that our proposed method outperforms the conventional deep networks in term of Dice score, which achieves 71.72%.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3