Head and Neck Cancer Segmentation in FDG PET Images: Performance Comparison of Convolutional Neural Networks and Vision Transformers

Author:

Xiong Xiaofan1ORCID,Smith Brian J.2,Graves Stephen A.3,Graham Michael M.3ORCID,Buatti John M.4,Beichel Reinhard R.5

Affiliation:

1. Department of Biomedical Engineering, The University of Iowa, Iowa City, IA 52242, USA

2. Department of Biostatistics, The University of Iowa, Iowa City, IA 52242, USA

3. Department of Radiology, The University of Iowa, Iowa City, IA 52242, USA

4. Department of Radiation Oncology, University of Iowa Hospitals and Clinics, Iowa City, IA 52242, USA

5. Department of Electrical and Computer Engineering, The University of Iowa, Iowa City, IA 52242, USA

Abstract

Convolutional neural networks (CNNs) have a proven track record in medical image segmentation. Recently, Vision Transformers were introduced and are gaining popularity for many computer vision applications, including object detection, classification, and segmentation. Machine learning algorithms such as CNNs or Transformers are subject to an inductive bias, which can have a significant impact on the performance of machine learning models. This is especially relevant for medical image segmentation applications where limited training data are available, and a model’s inductive bias should help it to generalize well. In this work, we quantitatively assess the performance of two CNN-based networks (U-Net and U-Net-CBAM) and three popular Transformer-based segmentation network architectures (UNETR, TransBTS, and VT-UNet) in the context of HNC lesion segmentation in volumetric [F-18] fluorodeoxyglucose (FDG) PET scans. For performance assessment, 272 FDG PET-CT scans of a clinical trial (ACRIN 6685) were utilized, which includes a total of 650 lesions (primary: 272 and secondary: 378). The image data used are highly diverse and representative for clinical use. For performance analysis, several error metrics were utilized. The achieved Dice coefficient ranged from 0.833 to 0.809 with the best performance being achieved by CNN-based approaches. U-Net-CBAM, which utilizes spatial and channel attention, showed several advantages for smaller lesions compared to the standard U-Net. Furthermore, our results provide some insight regarding the image features relevant for this specific segmentation application. In addition, results highlight the need to utilize primary as well as secondary lesions to derive clinically relevant segmentation performance estimates avoiding biases.

Funder

NIH/NCI

Burke Family Foundation

Publisher

MDPI AG

Subject

Radiology, Nuclear Medicine and imaging

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3