Zero-Shot Learning for Cross-Lingual News Sentiment Classification

Author:

Pelicon Andraž,Pranjić Marko,Miljković Dragana,Škrlj BlažORCID,Pollak Senja

Abstract

In this paper, we address the task of zero-shot cross-lingual news sentiment classification. Given the annotated dataset of positive, neutral, and negative news in Slovene, the aim is to develop a news classification system that assigns the sentiment category not only to Slovene news, but to news in another language without any training data required. Our system is based on the multilingual BERTmodel, while we test different approaches for handling long documents and propose a novel technique for sentiment enrichment of the BERT model as an intermediate training step. With the proposed approach, we achieve state-of-the-art performance on the sentiment analysis task on Slovenian news. We evaluate the zero-shot cross-lingual capabilities of our system on a novel news sentiment test set in Croatian. The results show that the cross-lingual approach also largely outperforms the majority classifier, as well as all settings without sentiment enrichment in pre-training.

Funder

Javna Agencija za Raziskovalno Dejavnost RS

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference48 articles.

1. An overview of sentiment analysis in social media and its applications in disaster relief;Beigi,2016

2. Sentiment Analysis: An Overview;Mejova,2009

3. Annotated news corpora and a lexicon for sentiment analysis in Slovene

4. Sentiment Analysis and Opinion Mining

5. Fine-grained analysis of explicit and implicit sentiment in financial news articles

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3