1. Go, A., Bhayani, R., and Huang, L. (2009). Twitter Sentiment Classification Using Distant Supervision, Stanford University. CS224N Project Report.
2. Nakov, P., Rosenthal, S., Kozareva, Z., Stoyanov, V., Ritter, A., and Wilson, T. (2013, January 14–15). SemEval-2013 Task 2: Sentiment Analysis in Twitter. Proceedings of the Seventh International Workshop on Semantic Evaluation (SemEval 2013), Atlanta, GA, USA.
3. Saif, H., Fernández, M., He, Y., and Alani, H. (2013, January 3). Evaluation datasets for Twitter sentiment analysis: A survey and a new dataset, the STS-Gold. Proceedings of the 1st Interantional Workshop on Emotion and Sentiment in Social and Expressive Media: Approaches and Perspectives from AI (ESSEM 2013), Turin, Italy.
4. Recognizing contextual polarity: An exploration of features for phrase-level sentiment analysis;Wilson;Comput. Linguist.,2009
5. Agarwal, A., Xie, B., Vovsha, I., Rambow, O., and Passonneau, R.J. (2011, January 23). Sentiment analysis of twitter data. Proceedings of the Workshop on Language in Social Media (LSM 2011), Portland, OR, USA.