SDN-Based Control of IoT Network by Brain-Inspired Bayesian Attractor Model and Network Slicing

Author:

Alparslan OnurORCID,Arakawa Shin’ichiORCID,Murata MasayukiORCID

Abstract

One of the models in the literature for modeling the behavior of the brain is the Bayesian attractor model, which is a kind of machine-learning algorithm. According to this model, the brain assigns stochastic variables to possible decisions (attractors) and chooses one of them when enough evidence is collected from sensory systems to achieve a confidence level high enough to make a decision. In this paper, we introduce a software defined networking (SDN) application based on a brain-inspired Bayesian attractor model for identification of the current traffic pattern for the supervision and automation of Internet of things (IoT) networks that exhibit a limited number of traffic patterns. In a real SDN testbed, we demonstrate that our SDN application can identify the traffic patterns using a limited set of fluctuating network statistics of edge link utilization. Moreover, we show that our application can improve core link utilization and the power efficiency of IoT networks by immediately applying a pre-calculated network configuration optimized by traffic engineering with network slicing for the identified pattern.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3