Machine Learning in High-Alert Medication Treatment: A Study on the Cardiovascular Drug

Author:

Tai Chun-Tien,Sue Kuen-Liang,Hu Ya-HanORCID

Abstract

The safety of high-alert medication treatment is still a challenge all over the world. Approximately one-half of adverse drug events (ADEs) are related to high-alert medications, which motivates us to improve the predicament faced in clinical practice. The purpose of this study is to use machine-learning techniques to predict the risk of high-alert medication treatment. Taking the cardiovascular drug digoxin as an example, we collected the records of 513 patients who received the pertinent therapy during hospitalization at a tertiary medical center in Taiwan. Considering serum digoxin concentration (SDC) is the primary indicator for assessing the risk of digoxin therapy, patients with SDC being controlled at the recommended range before their discharge were defined as a low-risk population; otherwise, patients were defined as the high-risk population. Weka 3.9.4—an open source machine learning software—was adopted to develop binary classification models to predict the risk of digoxin therapy by a number of machine-learning techniques, including k-nearest neighbors (kNN), decision tree (C4.5), support vector machine (SVM), random forest (RF), artificial neural network (ANN) and logistic regression (LGR). The results showed that the performance of RF was the best, followed by C4.5 and ANN; the remaining classifiers performed poorly. This study confirmed that machine-learning techniques can yield favorable prediction effectiveness for high-alert medication treatment, thereby decreasing the risk of ADEs and improving medication safety.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Artificial intelligence in the field of pharmacy practice: A literature review;Exploratory Research in Clinical and Social Pharmacy;2023-12

2. Machine Learning: A New Approach for Dose Individualization;Clinical Pharmacology & Therapeutics;2023-09-29

3. High alert drugs screening using gradient boosting classifier;Scientific Reports;2021-10-11

4. Detecting Digoxin Toxicity by Artificial Intelligence-Assisted Electrocardiography;International Journal of Environmental Research and Public Health;2021-04-06

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3