Abstract
A modified parallel electrode method (MPEM), conducted by placing a positively charged ring between the needle and the paralleled electrode collector, was presented to fabricate aligned polyacrylonitrile/graphene (PAN/Gr) composite nanofibers (CNFs) with nanopores in an electrospinning progress. Two kinds of solvents and one kind of nanoparticle were used to generate pores on composite nanofibers. The spinning parameters, such as the concentration of solute and solvent, spinning voltage and spinning distance were discussed, and the optimal parameters were determined. Characterizations of the aligned CNFs with nanopores were investigated by scanning electron microscopy (SEM), fourier transform infrared (FTIR) spectroscopy, X-ray diffraction (XRD) analysis, transmission electron microscopy (TEM), high-resistance meter, and other methods. The results showed that graphene (Gr) nanoparticles were successfully introduced into aligned CNFs with nanopores and almost aligned along the axis of the CNFs. The MPEM method could make hydrophobic materials more hydrophobic, and improve the alignment degree and conductive properties of electrospun-aligned CNFs with nanopores. Moreover, the carbonized CNFs with nanopores, used as an electrode material, had a smaller charge-transfer resistance, suggesting potential application in electrochemical areas and electron devices.
Funder
Six Talent Peaks Project of Jiangsu Province
Subject
General Materials Science,General Chemical Engineering
Cited by
15 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献