Enhanced electrocatalytic degradation of tetracycline by ZIF-67@CNT coupled with a self-standing aligned carbon nanofiber anodic membrane

Author:

Yu Shuyan,Zhang Huiying,Zhou Yan,Li CongjuORCID

Abstract

Abstract Due to the misuse and overuse of the antibiotic tetracycline (TC), as well as its refractory degradability, it has become a stubborn environmental contaminant. In this study, a self-standing polyacrylonitrile-based ZIF-67@CNT/ACF aligned anodic membrane was fabricated by innovatively incorporating ZIF-67@CNT nanoparticles into an aligned carbon nanofiber (ACF) membrane to treat the TC. The flow-through nanoporous construction of the ZIF-67@CNT/ACF membrane reactor can compress the diffusion boundary layer on the electrode surface to enhance mass transfer under microscopic laminar flow, which can further enhance the degradation rate. In addition, the enhanced degradation performance also benefited from the significant electrooxidation capacity of the ZIF-67@CNT/ACF membrane. At the optimal electrocatalytic condition of 3.0 V applied potential and pH 6, the degradation rate reached 81% in 1 h for an initial TC concentration of 10 mg l−1. The refractory and highly toxic TC was electrochemically degraded into small non-toxic molecules. Our results indicate that electrocatalytic TC degradation can be enhanced by ZIF-67@CNT/ACF membrane.

Funder

National Natural Science Foundation of China

Fundamental Research Funds for the Central Universities

Publisher

IOP Publishing

Subject

Electrical and Electronic Engineering,Mechanical Engineering,Mechanics of Materials,General Materials Science,General Chemistry,Bioengineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3