Cooling Design for PEM Fuel-Cell Stacks Employing Air and Metal Foam: Simulation and Experiment

Author:

Hmad Ali A.,Dukhan Nihad

Abstract

A new study investigating the cooling efficacy of air flow inside open-cell metal foam embedded in aluminum models of fuel-cell stacks is described. A model based on a commercial stack was simulated and tested experimentally. This stack has three proton exchange membrane (PEM) fuel cells, each having an active area of 100 cm2, with a total output power of 500 W. The state-of-the-art cooling of this stack employs water in serpentine flow channels. The new design of the current investigation replaces these channels with metal foam and replaces the actual fuel cells with aluminum plates. The constant heat flux on these plates is equivalent to the maximum heat dissipation of the stack. Forced air is employed as the coolant. The aluminum foam used had an open-pore size of 0.65 mm and an after-compression porosity of 60%. Local temperatures in the stack and pumping power were calculated for various air-flow velocities in the range of 0.2–1.5 m/s by numerical simulation and were determined by experiments. This range of air speed corresponds to the Reynolds number based on the hydraulic diameter in the range of 87.6–700.4. Internal and external cells of the stack were investigated. In the simulations, and the thermal energy equations were solved invoking the local thermal non-equilibrium model—a more realistic treatment for airflow in a metal foam. Good agreement between the simulation and experiment was obtained for the local temperatures. As for the pumping power predicted by simulation and obtained experimentally, there was an average difference of about 18.3%. This difference has been attributed to the poor correlation used by the CFD package (ANSYS) for pressure drop in a metal foam. This study points to the viability of employing metal foam for cooling of fuel-cell systems.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Reference52 articles.

1. Polymer electrolyte membrane fuel cell with metal foam in the gas flow-filed of bipolar/end plates;Kumar;J. New Mater. Electrochem. Syst.,2003

2. Air-cooled micro-porous heat exchangers for thermal management of fuel cells

3. News Release;Kusie,2010

4. On the road to high performance PEM fuel cells for portable applications;Enache;Prog. Cryog. Isot. Sep.,2014

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3