Heat Transfer in 3D Laguerre–Voronoi Open-Cell Foams under Pulsating Flow

Author:

Khairullin AidarORCID,Haibullina AigulORCID,Sinyavin AlexORCID,Balzamov DenisORCID,Ilyin Vladimir,Khairullina Liliya,Bronskaya Veronika

Abstract

Open-cell foams are attractive for heat transfer enhancement in many engineering applications. Forced pulsations can lead to additional heat transfer enhancement in porous media. Studies of heat transfer in open-cell foams under forced pulsation conditions are limited. Therefore, in this work, the possibility of heat transfer enhancement in porous media with flow pulsations is studied by a numerical simulation. To generate the 3D open-cell foams, the Laguerre–Voronoi tessellation method was used. The foam porosity was 0.743, 0.864, and 0.954. The Reynolds numbers ranged from 10 to 55, and the products of the relative amplitude and the Strouhal numbers ranged from 0.114 to 0.344. Heat transfer was studied under the conditions of symmetric and asymmetric pulsations. The results of numerical simulation showed that an increase in the amplitude of pulsations led to an augmentation of heat transfer for all studied porosities. The maximum intensification of heat transfer was 43%. Symmetric pulsations were more efficient than asymmetric pulsations, with Reynolds numbers less than 25. The Thermal Performance Factor was always higher for asymmetric pulsations, due to the friction factor for symmetrical pulsations being much higher than for asymmetric pulsations. Based on the results of a numerical simulation, empirical correlations were obtained to predict the heat transfer intensification in porous media for a steady and pulsating flow.

Funder

Russian Science Foundation

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3