Abstract
The influence of the briquetting process on SO2 and NO release characteristics, combustion properties and kinetic characteristics during biomass combustion was investigated. Two biomass (Wheat straw and Tree bulk) and two obtained briquettes were analysed. The briquetting process helps to prevent the release of SO2 and NO. The experimental results show that once the biomass is made into a briquette, when the reaction temperature is 900 ∘C, the sulphur release ratio for TB was reduced from 34.7% to 4.3% and for WS was reduced from 12.4% to 1.6%. When the reaction temperature increases to 1000 ∘C, the sulphur release ratio for TB was reduced from 73.4% to 30.4%, for WS it was reduced from 58.4% to 10.2%. SEM micrographs show that the compact structure of the TB-Briquette and WS-Briquette reduce the rate of SO2 and NO release during combustion. The thermogravimetry confirmed that the combustion performance of WS-Briquette is the best, while the TB-Briquette is the worst. According to the Coats-Redfern method, the fitting was performed at segments of 250 ∘C to 550 ∘C, and the correlation coefficient of the fitting degree was above 0.99. The effective collision rate of WS-Briquette is much higher than that of other briquettes. Compared to BR-1 and BR-2, trying to mix TB with WS to make a compound biomass briquette can enhance the combustion performance of TB-Briquette. The results may guide the upgrading of biomass briquettes technology and benefit the efficient application of biomass briquettes.
Funder
National Natural Science Foundation of China
College Independent Innovation Fund of Jinan
Subject
Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献