Combustion Efficiency of Various Forms of Solid Biofuels in Terms of Changes in the Method of Fuel Feeding into the Combustion Chamber

Author:

Dula Małgorzata1ORCID,Kraszkiewicz Artur2ORCID,Parafiniuk Stanisław2ORCID

Affiliation:

1. The Foreign Languages Teaching Centre of the University of Life Sciences in Lublin, University of Life Sciences in Lublin, Głęboka Street 28, 20-612 Lublin, Poland

2. Department of Machine Operation and Production Processes Management, University of Life Sciences in Lublin, Głęboka Street 28, 20-612 Lublin, Poland

Abstract

This study analyzes the combustion of pellets and briquettes made of plant biomass in low-power heating devices powered periodically with fuel being placed on the grate, as well as after modification using an automatic fuel feeding system in the gutter burner. The use of herbaceous biomass in the form of pellets in low-power heating devices with automatic fuel feeding and combustion in a gutter burner is not widely promoted and popular. Therefore, this study used four types of herbaceous waste biomass (wheat straw, rye straw, oat straw and hay) and one type of woody waste biomass (birch sawdust) for testing. The basic chemical characteristics were determined for the raw materials. After appropriate preparation, the selected starting materials were subjected to briquetting and pelleting processes. Selected physical properties were also determined for the obtained biofuels. Biofuels made from birch sawdust had the lowest heat value (16.34 MJ·kg−1), although biofuels made from wheat, rye and hay straw had a slightly lower calorific value, respectively: 16.29; 16.28 and 16.26 MJ·kg−1. However, the calorific value of oat straw biofuels was only 15.47 MJ kg−1. Moreover, the ash content for herbaceous biomass was 2–4 times higher than for woody biomass. Similar differences between herbaceous and woody biomass were also observed for the nitrogen and sulfur content. To burn the prepared biofuels, a domestic grate-fired biomass boiler was used, periodically fed with portions of fuel in the form of pellets or briquettes (type A tests), which was then modified with a gutter burner enabling the automatic feeding of fuel in the form of pellets (type B tests). During the combustion tests with simultaneous timing, the concentration of CO2, CO, NO and SO2 in the exhaust gases was examined and the temperature of the supplied air and exhaust gases was measured. The stack loss (qA), combustion efficiency index (CEI) and toxicity index (TI) were also calculated. The research shows that the use of automatic fuel feeding stabilizes the combustion process. The combustion process is balanced between herbaceous and woody biomass biofuels. Disparities in CO2, CO and Tgas emissions are decreasing. However, during type B tests, an increase in NO emissions is observed. At the same time, the research conducted indicates that the combustion of herbaceous biomass pellets with their automatic feeding into the combustion chamber is characterized by an increase in combustion efficiency, indicating that when the combustion process is automated, they are a good replacement for wood biofuels—both pellets and briquettes.

Funder

Polish Ministry of Science and Higher Education

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3