Use of Artificial Neural Networks to Predict Fuel Consumption on the Basis of Technical Parameters of Vehicles

Author:

Ziółkowski Jarosław,Oszczypała MateuszORCID,Małachowski JerzyORCID,Szkutnik-Rogoż JoannaORCID

Abstract

This publication presents a multi-faceted analysis of the fuel consumption of motor vehicles and the way human impacts the environment, with a particular emphasis on the passenger cars. The adopted research methodology is based on the use of artificial neural networks in order to create a predictive model on the basis of which fuel consumption of motor vehicles can be determined. A database containing 1750 records, being a set of information on vehicles manufactured in last decade, was used in the process of training the artificial neural networks. The MLP (Multi-Layer Perceptron) 22-10-3 network has been selected from the created neural networks, which was further subjected to an analysis. In order to determine if the predicted values match the real values, the linear Pearson correlation coefficient r and coefficient of determination R2 were used. For the MLP 22-10-3 neural network, the calculated coefficient r was within range 0.93–0.95, while the coefficient of determination R2 assumed a satisfactory value of more than 0.98. Furthermore, a sensitivity analysis of the predictive model was performed, determining the influence of each input variable on prediction accuracy. Then, a neural network with a reduced number of neurons in the input layer (MLP-20-10-3) was built, retaining a quantity of the hidden and output neurons and the activation functions of the individual layers. The MLP 20-10-3 neural network uses similar values of the r and R2 coefficients as the MLP 22-10-3 neural network. For the evaluation of both neural networks, the measures of the ex post prediction errors were used. Depending on the predicted variable, the MAPE errors for the validation sets reached satisfactory values in the range of 5–8% for MLP 22-10-3 and 6–10% for MLP 20-10-3 neural network, respectively. The prediction tool described is intended for the design of passenger cars equipped with internal combustion engines.

Funder

Military University of Technology

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3